

An Initiative of the Clean Energy Ministerial

Resource Adequacy and Flexibility: Keeping the Lights On

May 24, 2023

DO NOT CITE OR REFERENCE. This work is not for distribution or commercial purposes. The methodology, formula, and analysis used and presented in this document and the views herein do not necessarily represent the views of or are endorsed by the U.S. Department of Energy or the U.S. Government, or any agency thereof.

An Initiative of the Clean Energy Ministerial

Webinar & Speaker Introductions

Moderated by Dr. Doug Arent, National Renewable Energy Laboratory

May 24th, 2023

- Overview of the Clean Energy Solutions Center
- Overview of the 21st Century Power Partnership
- Resource Adequacy in Decarbonizing Power Systems
- Ensuring Flexibility in Conventional Power Plants to Integrate Renewables
- Q&A

Webinar Speakers

Doug Arent

Executive Director of Strategic Public-Private Partnerships, **National Renewable Energy Laboratory**

Robert Horner

International Relations Specialist, **U.S. Department** of Energy

Jeff Logan

Chief Analyst, National Renewable Energy Laboratory

Gord Stephen

Grid Systems Research Engineer, National Renewable Energy Laboratory

Priyam Jain

Manager, Grid Controller of India Ltd. (GRID-INDIA)

An Initiative of the Clean Energy Ministerial

Overview of the Clean Energy Solutions Center

Presented by Robert Horner, U.S. Department of Energy

May 24th, 2023

The Clean Energy Solutions Center

OBJECTIVE

To accelerate the transition of clean energy markets and technologies.

ACTORS

Leads:

Operating Agent:

Partners:

More than 40 partners, including UN-Energy, IRENA, IEA, IPEEC, REEEP, REN21, SE4AII, IADB, ADB, AfDB, and other workstreams etc.

RATIONALE

Many developing governments lack capacity to design and adopt policies and programs that support the deployment of clean energy technologies.

ACTIONS

- Deliver dynamic services that enable expert assistance, learning, and peer-to-peer sharing of experiences. <u>Services are offered at</u> <u>no-cost to users.</u>
- Foster dialogue on emerging policy issues and innovation across the globe.
- Serve as a first-stop clearinghouse of clean energy policy resources, including policy best practices, data, and analysis tools.

AMBITION/TARGET

Support governments in developing nations of the world in strengthening clean energy policies and finance measures

UPDATES

Website:

www.cleanenergyministerial.org/initiativ es-campaigns/clean-energy-solutionscenter

Factsheet:

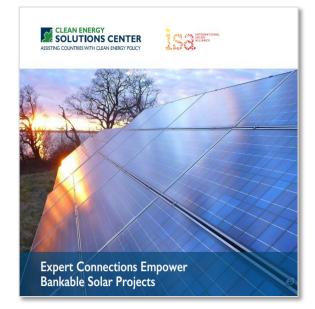
www.nrel.gov/docs/fy22osti/83658.pdf

Requests: Now accepting Ask an Expert requests!

The Clean Energy Solutions Center

Ask an Expert Service

- Ask an Expert is designed to help policymakers in developing countries and emerging economies identify and implement *clean energy policy* and finance solutions.
- The Ask an Expert service features a network of more than **50** experts from over **15** countries.
- Responded to **300+** requests submitted by **90+** governments and regional organizations from developing nations since inception


Training and Capacity Building

Delivered over 300 webinars training more than 20,000 public & private sector stakeholders.

<u>Resource Library</u>

• Over **1,500** curated reports, policy briefs, journal articles, etc.

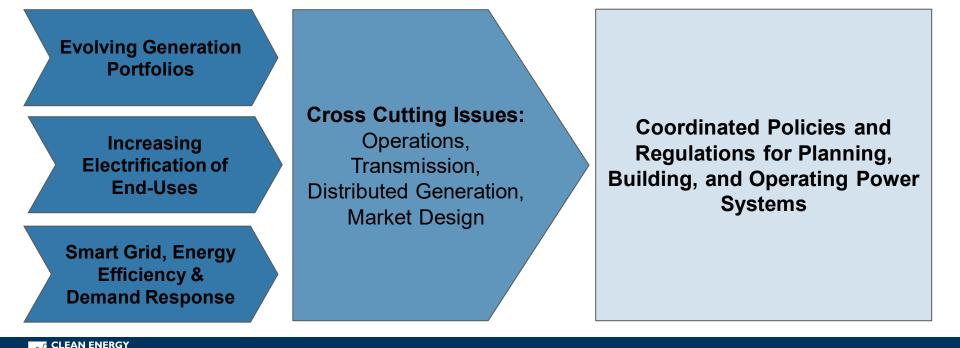
Advancing Clean Energy Together

COUNTRIES WITH CLEAN ENERGY POLICY

For additional information and questions, reach out to Jal Desai, NREL, <u>jal.desai@nrel.gov</u>

An Initiative of the Clean Energy Ministerial

Overview of the 21st Century Power Partnership


Presented by Jeff Logan, National Renewable Energy Laboratory

May 24th, 2023

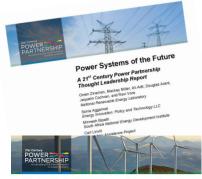
21CPP Objectives: Power System Transformation

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Accelerating the transition to clean, efficient, reliable, and cost-effective power systems.

21CPP: Key Activities

Annual Program of Work Includes:


- "Thought-Leadership" studies that focus on generic power system transformation topics across the world
- In-country technical assistance, often as part of a larger development assistance effort, focused on *Coordinated Power System Planning & Operations, including technology innovation, policy, and regulation*

- High-resolution grid integration studies often highlight this work.

 Information exchange, capacity building, fellowship programs, and other exercises to share lessons-learned and knowledge transfer.

Leading Practices

Flexibility in 21st Century Power Systems

Creversity Callege Duble (Michael Centry Legent Control Legent Michael Centry Agency Stream Market Device Centry Callege Duble) Michael Centry Callege Duble (Michael Centry Centry Agency Stream Market Device Centry Cent

Introduction

because loads change over time and in sometimes unpredictable ways, and conventional resources fail energy in the system. Solar energy will cause qualitatively

solar generation output vary significantly over the course Because it can take several years to design and build new of hours to days, sometimes in a predictable fashion, but often imperfectly forecasted. generators and transmission lines, the planning process is the first critical activity to ensure that the power system of

To illustrate how variable renewable energy can increase the growth of variable renewable generation. In regulate the need for flexibility, Figure 1 demonstrates how variable paradigms, this function may resemble a central-planning and shows the daily variability of demand on an houry basis for one week. The green shows wind energy and fieldbit to operate efficiently. the orange represents the demand-less-wind energy that

Advance/appends. The order are grantly induced to the ensement of the study time Market William Collind Colline Count in the study. Markets Earlier, 1968, Andreas Herbert and Victo Kindl Organizations of Industry, Comment of Advantis, and Advan Lyan Markets Earlier, 1969, Andreas Herbert and Victo Kindl Organizations (Lennaux), Lennaux, Jones Jatters Colling, Markets Markets, 1969, Andreas Herbert and Victo Kindl Organizations (Lennaux), Lennaux, Jones Jatters Colling, Markets Markets, 1969, Andreas Herbert Colling, Tang), and and an appendix to Herbert South Colling, Advanced Advanced Advanced Colling, 1969, Andreas Herbert Colling, Tang), and and an appendix to Herbert South Colling, 1969, Andreas Herbert Colling, Tang), and Andreas Advanced Tang, 1969, Andreas Herbert Colling, Tang), and Advanced Colling, 1969, Andreas Herbert Colling, Tang), and Andreas Advanced Tang, 1969, Andreas Herbert Colling, Tang), and Advanced Colling, 1969, Andreas Herbert Colling, Tang), 1969, Andreas Herbert Colling, Tang), 1969, Andreas Herbert Colling, Tang), 1969,

LESSONS LEARNED FOR RAPID **DECARBONIZATION OF POWER SECTORS**

Collaborative Report from the Clean Energy Ministerial

Delivered for the Global Clean Energy Action Forum (GCEAF/CEM13/MI7)

September 2022

Prateek Joshi and Jeff Logan National Renewable Energy Laboratory

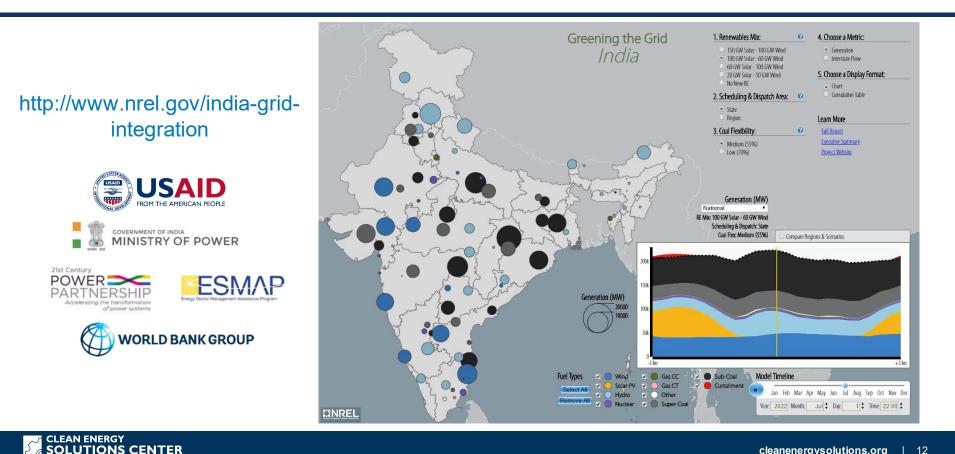
NREL/PR-6A20-83951

POWER Status Report on Power System Transformation A 21st Century Power Partnership Report Mackay Miller

Market Evolution: Wholesale Electricity Market Design for 21st Century **Power Systems**

Jaquelin Cochran, Mackay Miller, Michael Milligan, Erik Ela, ouglas Arent, and Aaron Bloom National Renewable Energy Laboratory Matthew Futch

Juha Kiviluoma and Hannele Holtinnen VTT Technical Research Centre of Finland Antie Orths Energinet.dk Emilio Gómez-Lázaro and Sergio Martin-Martinez Universidad de Castilla La Mancha


Steven Kukoda and Glycon Garcia International Copper Association Kim Maller Mikkelsen Global Green Growth Institute (GGGI) Zhao Yongqiang and Kaare Sandholt China National Renewable Energy Center

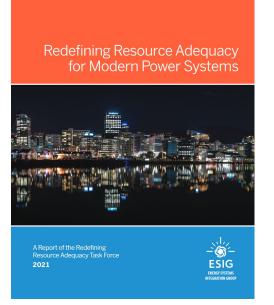
21stCenturyPower.org

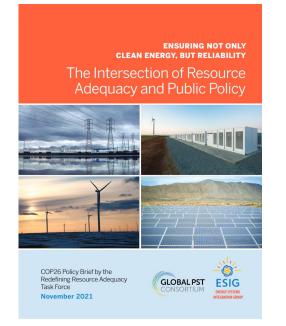
Technical Report NREL/TP-8A20-57477 October 2013 Contract No. DE-AC36-08GO28308

India Grid Integration Study

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

An Initiative of the Clean Energy Ministerial




Resource Adequacy in Decarbonizing Power Systems

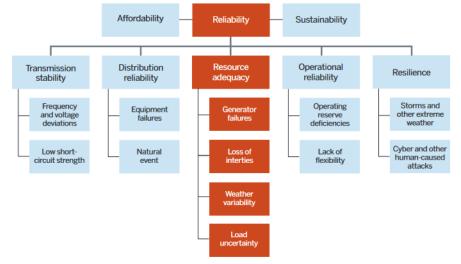
Presented by Gord Stephen, National Renewable Energy Laboratory (NREL)

May 24th, 2023

Today's content based on...

https://www.esig.energy/resource-adequacy-for-modern-power-systems/

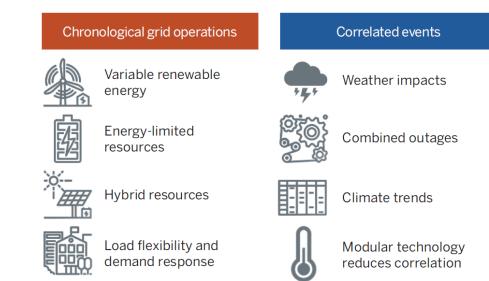
"Resource adequacy (RA) studies assess whether a power system has an appropriate set of resources to maintain continuous service to demand, with a desired level of certainty"


Resource Adequacy for a Decarbonized Future: A Summary of Existing and Proposed Resource Adequacy Metrics, EPRI, April 2022

• RA is just one aspect of grid reliability and overall grid performance

CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY


UTIONS CENTER

Source: Energy Systems Integration Group.

Why modernize resource adequacy analysis?

- Historical adequacy assessment focused on independent mechanical outages of thermal generating units
- Resource interactions and risk drivers in modern power systems can look dramatically different

Source: Energy Systems Integration Group.

Principle 1

Quantifying size, frequency, duration, and timing of capacity shortfalls is critical to finding the right resource solutions.

Principle 2

Chronological operations must be modeled across many weather years.

Principle 3

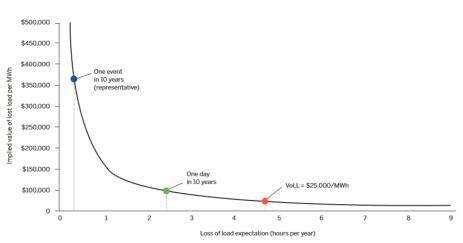
There is no such thing as perfect capacity

Principle 4

Load participation fundamentally changes the resource adequacy construct.

Principle 5

Neighboring grids and transmission should be modeled as capacity resources.


Principle 6

Reliability criteria should be transparent and economic.

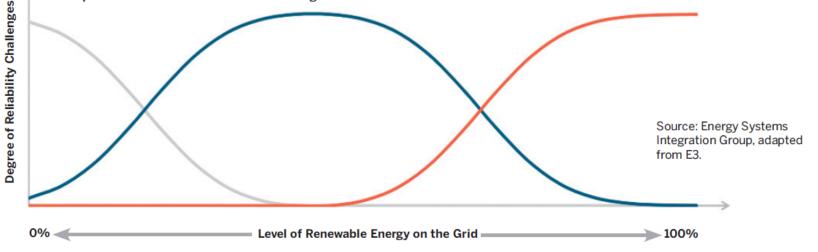
Principle 6: How much adequacy do we need?

- Both technical and economic factors need to be considered when defining an "acceptable" adequacy level
- Electricity shortfalls are undesirable, but so are high system costs
- Need to find the balance that is appropriate for the specific system context

Source: Regulatory Assistance Project / Hogan and Littell (2020).

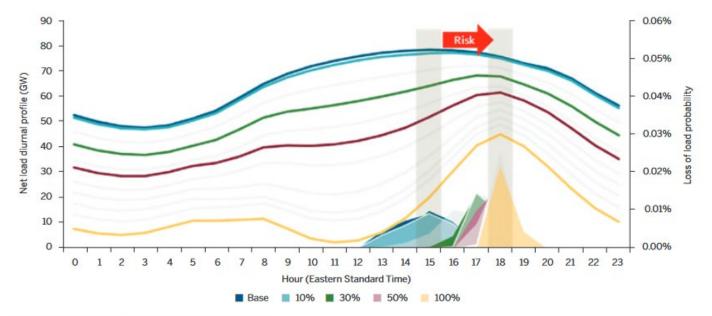
Principle 2: Study chronology and multiple weather years

Historical Summer Peak Load


On a grid with conventional thermal generation, periods of highest risk coincide with peak load hours.

Today's Summer Net-Peak Load

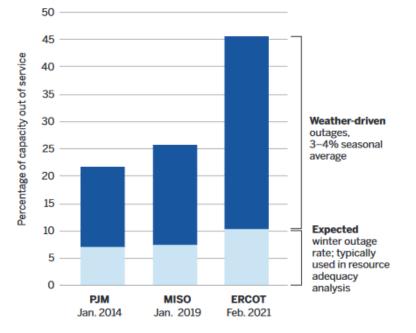
On a grid with rising levels of solar energy, periods of highest risk tend to be evenings.


Tomorrow's Winter Challenge

On a grid with high levels of variable renewable energy, periods of highest risk coincide with longer lulls in renewable generation, which tend to be in the winter and which may also be exacerbated by electrification of heating demand.

Principle 1: Identify specific risk characteristics

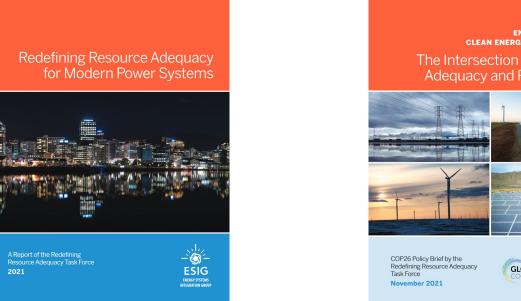
Source: Midcontinent Independent System Operator (2021).



Principle 3: No perfect capacity

- All generating resources, including thermal generation, face unavailability risks
- Need to better capture this risk (including timing, outage correlation, and commonmode failures) when considering system adequacy and comparing potential adequacy investments

CLEAN ENERGY


ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

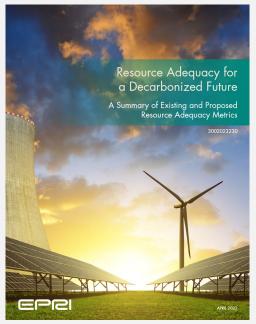
Includes forced outages plus derates for all technology types

Source: Energy Systems Integration Group.

Full reports, executive summaries and fact sheets

ENSURING NOT ONLY **CLEAN ENERGY, BUT RELIABILITY**

The Intersection of Resource Adequacy and Public Policy



https://www.esig.energy/resource-adequacy-for-modern-power-systems/

Further resources

Adequacy Risk Metrics

https://www.epri.com/research/products/00000003002023230

Adequacy Assessment

CSE Nº27 January 2023

Best Of Papers CIGRE Paris Session

a Scopus registered magazine ISSN: 2426-1335

🍘 cıgre

https://cse.cigre.org/cse-n027/c5-beyond-expected-valuesevolving-metrics-for-resource-adequacy-assessment

Capacity Accreditation

Ensuring Efficient Reliability NEW DESIGN PRINCIPLES FOR CAPACITY ACCREDITATION

A Report of the Energy Systems Integration Group's Redefining Resource Adequacy Task Force February 2023

https://www.esig.energy/new-design-principles-for-capacity-accreditation/

Further resources

Metric	Abbreviation	Units	Definition
Loss-of-load expectation	LOLE	Time periods/year*	Average number of event-periods per year* across all of the random samples simulated. The LOLE metric can be applied to any time period length, and must be clearly defined by the user.
Loss-of-load hours	LOLH	Hours/year*	Average event-hours per year* across all of the random samples simulated.
Loss-of-load days	LOLD	Days/year*	Average event-days per year* across all of the random samples simulated.
Loss-of-load years	LOLY	Years/study horizon	Average event-years per study horizon across all of the random samples simulated.
Loss-of-Load probability	LOLP	%	Calculated as the total number of event-periods divided by the total number of time periods sampled. The LOIP metric can be applied to any time period length and study horizon, and must be clearly defined by the user.
Loss-of-load events	LOLEv	Events/year*	Average count of events per year* across all of the random samples simulated.
Expected unserved energy	EUE	MWh/year*	Average load not served per year* due to shortfall events across all of the random samples simulated.
Normalized expected unserved energy	nEUE	%	Average load not served per year* due to shortfall events across all of the random samples simulated, calculated as a percentage of system load.

Method	Туре	Computational Burden	Data Requirements	
Effective Load Carrying Capability	Probabilistic	+++	+++	
Equivalent Firm Capacity	Probabilistic	+++	+++	
Equivalent Conventional Power	Probabilistic	+++	+++	
Installed Capacity	Approximation	+	+	
Unforced Capacity	Approximation	+	+	
Generation Over Peak Load	Approximation	+	++	
Generation Over Net Peak Road	Approximation	+	++	
Generation Over Peak LOLP Hours	Approximation	++	++	

+ = low, ++ = medium, +++ = high

5

CLEAN ENERGY

SOLUTIONS CENTER ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Country or Region	RA Metrics/Criter	ia	Entity Calculating	RA Metric		A STATE OF STATE
North America [20,21]						Resource Adequacy
MISO	LOLE ≤ 0.1 days/year		MISO	MISO		a Decarbonized Fut
MRO-Manitoba Hydro	LOLE ≤ 0.1 days/year		Manitoba Public Utilities Bo	Manitoba Public Utilities Board		A Summary of Existing and Prop Resource Adequacy M
NPCC-Maritimes	LOLE ≤ 0.1 days/year		Maritimes Sub-areas and N	Maritimes Sub-areas and NPCC		200
NPCC-New England	LOLE ≤ 0.1 days/year		ISO-NE and NPCC		-	
NPCC-New York	LOLE ≤ 0.1 days/year		NYSRC and NPCC		1	
NPCC-Ontario	Country or Region		RA Metrics/Criteria	Entity Ca	lculating RA Metric	
NPCC-Québec	Europe [18,25]					T
PJM Interconnection	Belgium [26]		≤ 3 hours/year	Elia Group		
SERC-C		_	95 ⁵ ≤ 20 hours/year			
SERC-E	France [27]	-	< 3 hours/year	RTE		WE WOW TRAIN
SERC-FP	Great Britain [28]	_	≤ 3 hours/year	National Grid E		CPCI .
SERC-SE	 Ireland and Northern Ireland [29] 		≤ 8 hours/year (Ireland) ≤ 4.9 hours/year (Northern Ireland)	EirGrid and SO	NI .	
SPP	Netherlands [30]	_	≤ 4 hours/year	TenneT		https://www.epri.com/research/prod
TRE-ERCOT ³	Poland [31]	LOLH	≤ 3 hours/year	PSE		/00000003002023230
WECC-AB	Portugal [27]	LOLH	≤ 5 hours/year	REN		
WECC-BC	Spain [27,32]	PRM 2	10% (Mainland)	REE		
WECC-WPP-US & RMRG [22]		LOU	Country or Region		RA Metrics/Criteria	Entity Calculating RA Metric
WECC-SRSG	Oceania		Asia			
WECC-CAMX [23]	Australia-NEM [33]	NEL	India [39]	LOLP° ≤ 0.2%		CEA
	Australia-NT [34]	NEL		NEUE ≤	0.05%	
Hawaii [24]	Australia-WEM [35]	PRN	Indonesia [40]	PRM (20	(National) ≥ 30% (National)	Ministry of Energy and Mineral Resources
	New Zealand [36,37]	NEL WE	Japan [41]	PRM (20	020–2029) ≥ 8% per region	ОССТО
	New Zealand [36,37]	WE	Laos [42] PRM (2020		(20–2030) ≥ 15%	Ministry of Energy and Mines
		WC			1 days/year	TNB
	Africa		Philippines [44]	PRM (20)17–2040) ≥ 25%	DOE
	South Africa [38]	EUE	Singapore [45,46]	LOLH ≤ 3	3 hours/year	EMA
		001	Thailand [47,48]	PRM (20)15–2036) ≥ 15%	EGAT
		Basi < 5(Vietnam [49]	LOLH ≤	12 hours/year per region	TIOM
			Middle East			
			Saudi Arabia [50]	PRM (20	16) ≥ 8–10%	SEC
			Oman [51]	LOLH ≤ :	24 hours/year	OPWP
		F	Qatar [52]	DD14 (00)19) ≥ 6%	KAHRAMAA

ps://www.epri.com/research/products 0000003002023230

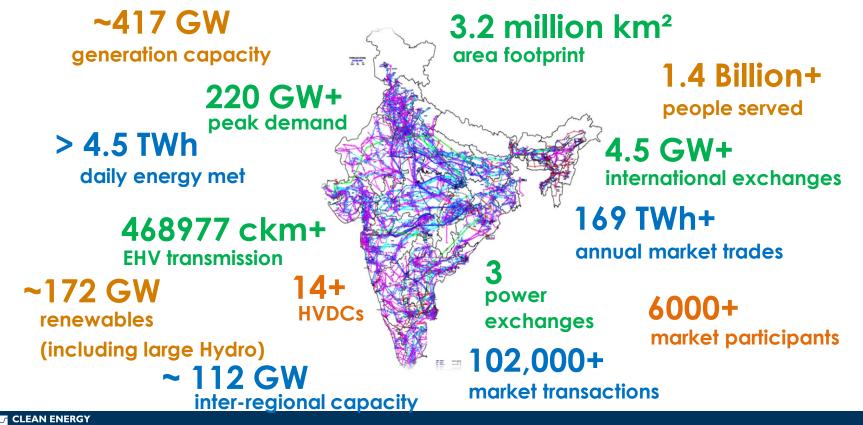
cleanenergysolutions.org 2

An Initiative of the Clean Energy Ministerial

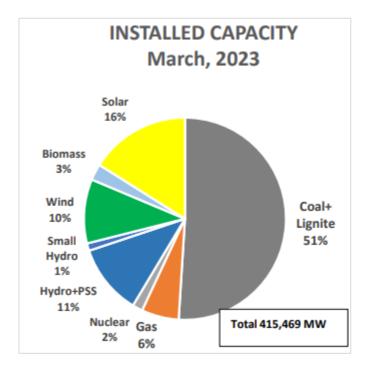
Ensuring Flexibility in Conventional Power Plants to Integrate Renewables

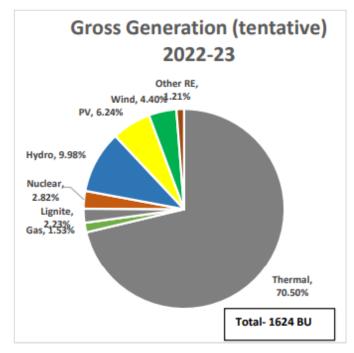
Presented by Priyam Jain, Grid Controller of India Ltd.

May 24th, 2023


Outline

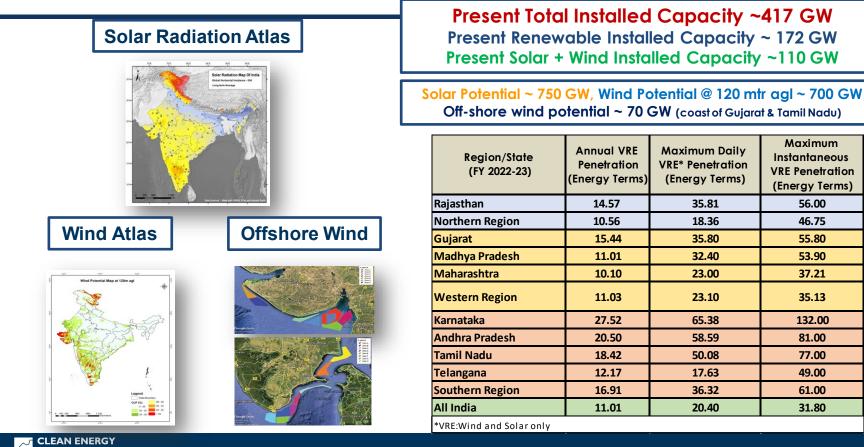
- Overview of Indian Power System
- Growing Need for Flexibility
- Flexibility Service Providers
- Role of Thermal Generators in providing requisite Flexibility
- Thermal Flexibilization Key Initiatives
- Way Forward




Dimensions

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Indian Power System – Current Capacity and Generation Mix



Source: CEA Report On Optimal Generation Capacity Mix for 2030 (Ver 2.0) https://cea.nic.in/wp-content/uploads/notification/2023/05/Optimal_mix_report_2029_30_Version_2.0_For_Uploading.pdf

Clean Energy Transition in India

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Clean Energy Transition: Roadmap

ALL INDIA INSTALLED CAPACITY (MW)						
Resource	Mar 2023	Mar 2030	% Addition			
Hydro	42104	53860	28%			
PSP	4746	5350	13%			
Small Hydro	4944	18986	284%			
Solar PV	66780	292566	338%			
Wind	42633	99895	134%			
Biomass	10802	14500	34%			
Nuclear	6780	15480	128%			
Coal+ Lignite	211855	251683	19%			
Gas	24824	24824	0%			
Total	415469*	777144**	87%			
BESS	0	41650 (5-hr)				

Total I/C - ~415 GW

Total I/C - ~777 GW

38%

2%

13%

2030

*Excluding 2136 MW of Hydro imports from neighboring countries and 589 MW Diesel based capacity **Excluding Hydro Imports of 5856 MW

Source: CEA Report On Optimal Generation Capacity Mix for 2030 (Ver 2.0) https://cea.nic.in/wp-content/uploads/notification/2023/05/Optimal mix report 2029 30 Version 2.0 For Uploading.pdf

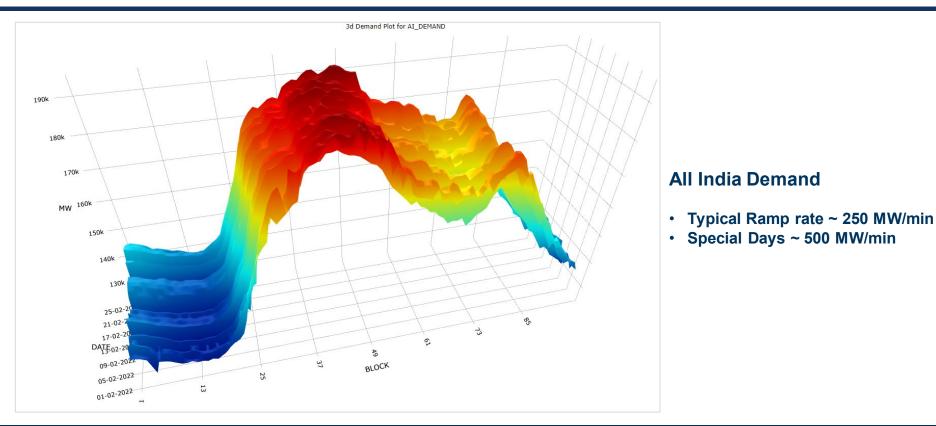
Hydro

Small Hydro

Solar PV

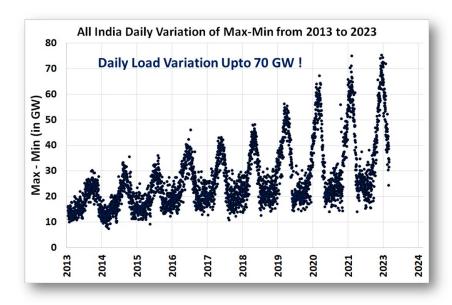
Biomass

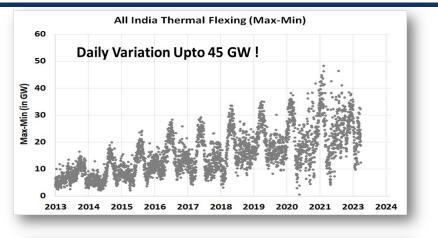
Nuclear

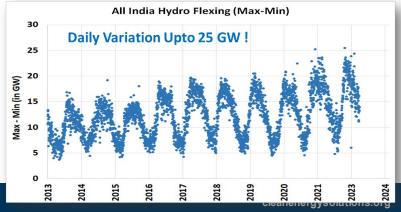

Gas

Coal+ Lignite

Wind

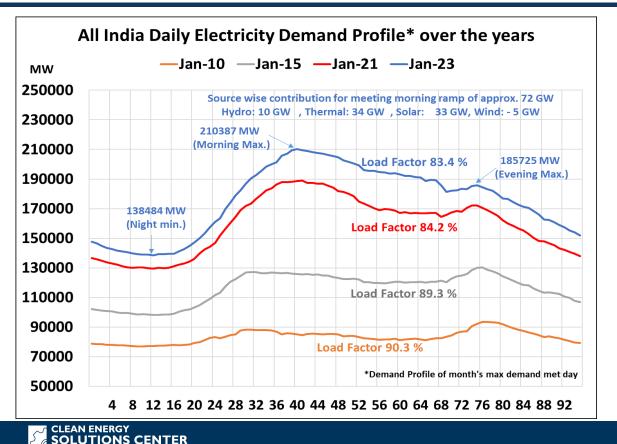

PSP


Growing Need for Flexibility – Increasing All India Demand Ramp

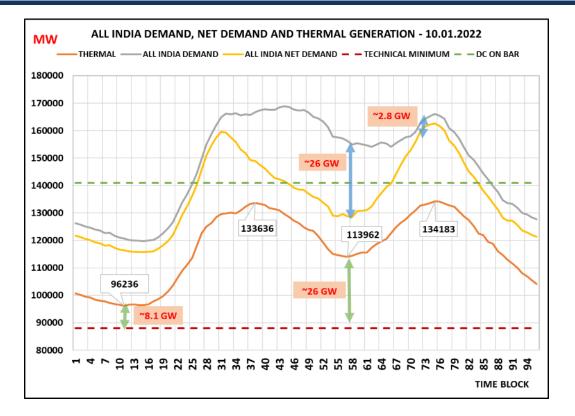


CLEAN ENERGY SOLUTIONS CENTER ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Growing Need for Flexibility – Increasing All India Demand Ramp



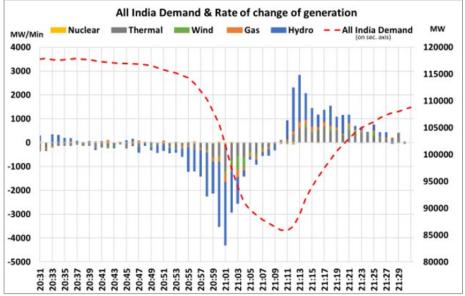
CLEAN ENERGY


Growing Need for Flexibility – Change in Load Shape

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Change in Load Shape Over the Years !!

Growing Need for Flexibility – Increasing Duck Curve Belly

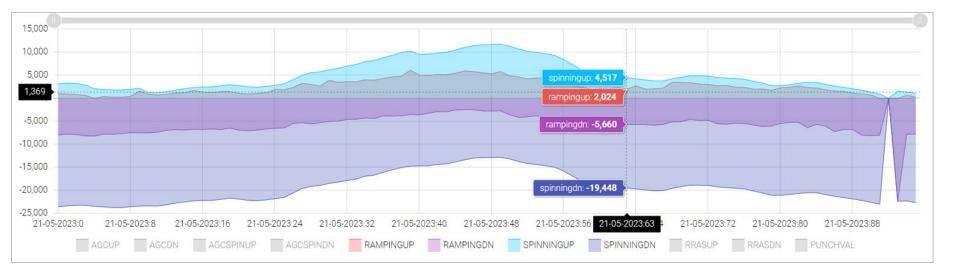

CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

- Increasing "Duck Curve" Belly
- Issues in absorbing additional RE (solar) beyond a certain quantum

Growing Need for Flexibility – HILF Events

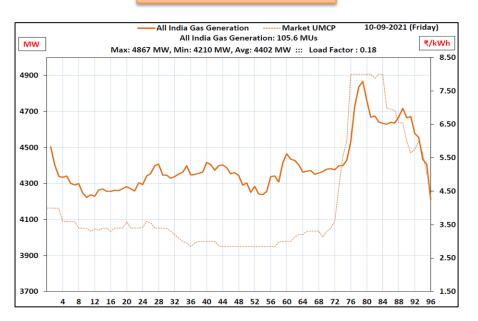
5th April 9PM9Min Event – Demand Reduction of ~31000 MW within 25 minutes


	Genera	ation/Dema	nd (MW)		Delta B to C (MW)	Max. Ramp (MW/Min) A to B
Type of Gen. / Demand	20:45 hrs (A)	21:10 hrs (B)	21:30 hrs (C)	Delta A to B (MW)		
Hydro	25559	8016	18923	17543	10907	2728
Thermal	75277	68037	75661	7240	7624	1109
Gas	7305	5355	7175	1950	1820	339
Wind	3564	1566	2527	1998	961	580
All India Demand	116887	85799	108808	31089	23009	4197

Flexibility provided primarily by Hydro and Thermal Generation

Growing Need for Flexibility – Availability of Reserves

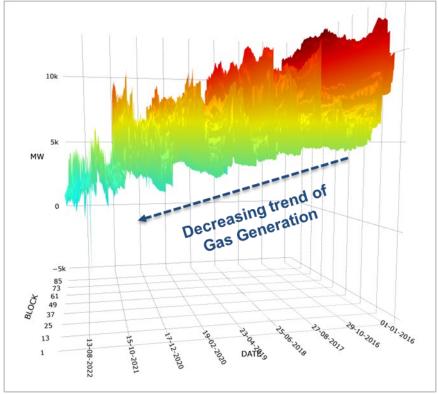
Availability of Ramp Limited Reserves



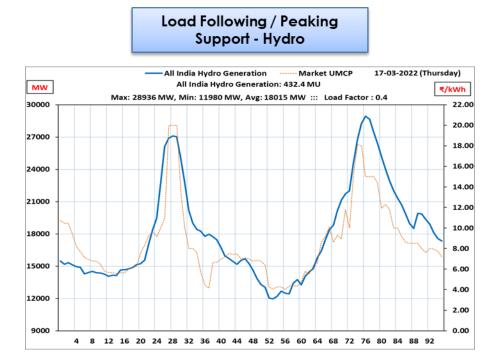
Source: Grid-India, RRAS Portal

Flexibility Providers – Gas Generation

All India Gas Generation



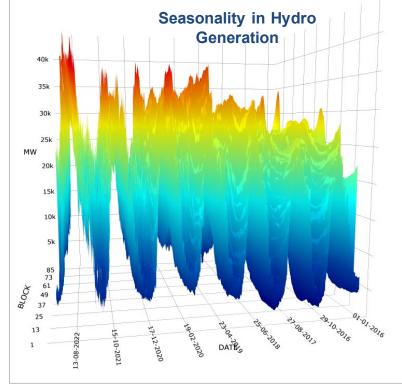
• Flexibility from Gas Generation constrained by availability of Gas !!


CLEAN ENERGY

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

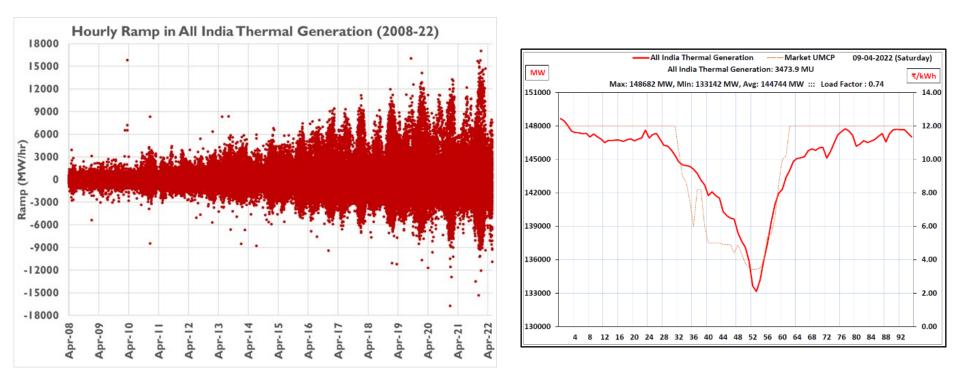
NS CENTER

Flexibility Providers – Hydro Generation

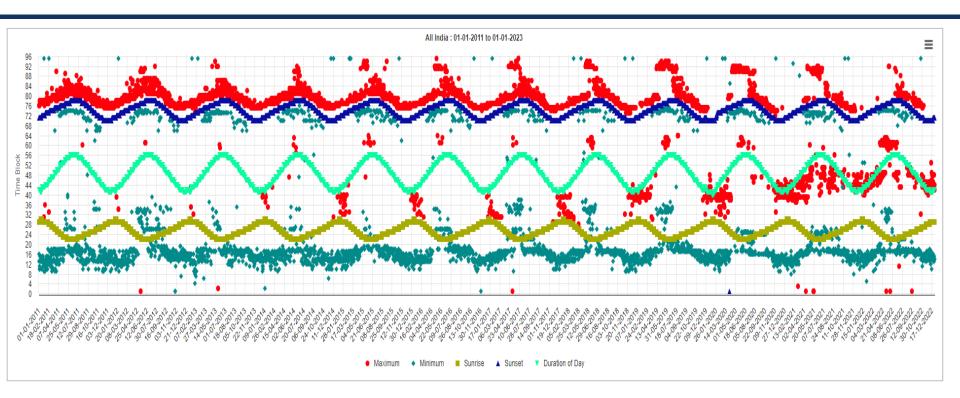


Flexibility from Hydro Generation is highly seasonal !!

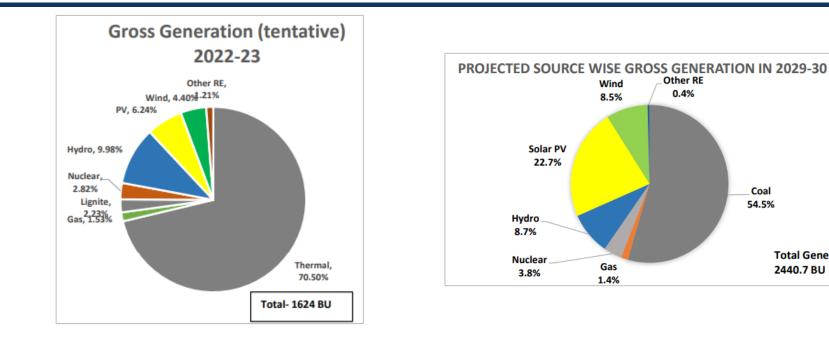
CLEAN ENERGY


ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

ONS CENTER


3D Plot – Hydro Generation (Jan 2016 – Jan 2023)

Flexibility Providers – Thermal Generation

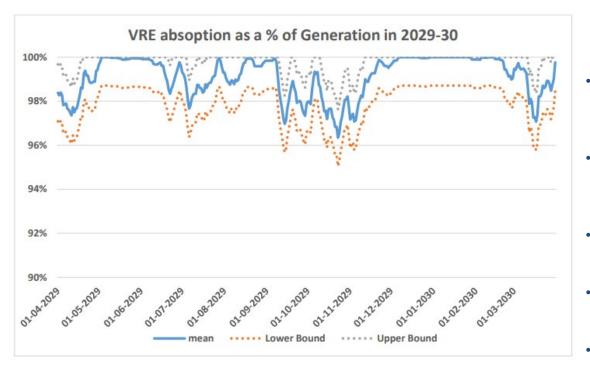

Harnessing Load Flexibility

Load shift to solar hours primarily due to catering of agricultural loads during this period

Role of Thermal Generation in providing Flexibility

Thermal Generation to remain a major source of generation and therefore, of flexibility also in 2030 !!

Source: CEA Report On Optimal Generation Capacity Mix for 2030 (Ver 2.0) https://cea.nic.in/wp-content/uploads/notification/2023/05/Optimal mix report 2029 30 Version 2.0 For Uploading.pdf


Coal

54.5%

Total Generation

2440.7 BU

Role of Flexible Thermal Generation in facilitating RE Integration

Optimal Generation Capacity Mix Studies for 2030 (Ver 2.0)

- During high RE period, RE absorption is likely to decrease to as low as **95%** on some days during 2029-30
- Minimum power level constraint of thermal generators (55% in studies) one of the major reasons for the same
- Additional BESS to absorb this power not found to be economical
- ~0.78% RE curtailment in 2029-30 with Min power level of 55%
- Decreases to 0.25% at 40% Min Power level

Source: CEA Report On Optimal Generation Capacity Mix for 2030 (Ver 2.0) https://cea.nic.in/wp-content/uploads/notification/2023/05/Optimal_mix_report_2029_30_Version_2.0_For_Uploading.pc

- CERC Grid Code 4th Amendment, Regulations 2016
 - □ Reduction of conventional thermal generation to the 55% levels

Following incentivization for operation of thermal plants at Lower Operational Levels also introduced

Compensation for the Increase in Heat Rate Degradation
 Compensation for Auxiliary Energy Consumption Degradation
 Start-up fuel cost over and above seven (7) start / stop in a year

• CERC (Terms and Conditions of Tariff) Regulations, 2019

□ Incentivized generators to provide ramping capability beyond the threshold of 1%

Central Electricity Authority (Technical Standard for Construction of Electrical Plant and Electrical Lines), 2022

Thermal Flexibilization – Policy Initiatives

- Central Electricity Authority (Flexible Operation of Coal based Thermal Power Generating Units) Regulations, 2023
 - Specify Minimum Power Level of 40% for Thermal Generating Units
 Requires thermal generators to be capable of providing 1%–3% ramp rate

"The coal based thermal power generating units shall have flexible operation capability with minimum power level of forty percent.

Provided that the generating units which are not capable of achieving minimum power level of **fifty-five percent**, **shall achieve the same within one year of the notification of these regulations**.

Provided further that the generating units which are not capable of achieving minimum power level of forty percent, shall achieve the same as per phasing plan mentioned in the sub-regulation (2) of regulation 5 of these regulations."

7(1) "...The coal based thermal power generating units shall have ramp rate capability of **minimum three percent per minute for their operation between seventy percent to hundred percent of maximum continuous power rating** and **shall have ramp rate capability of minimum two percent per minute for their operation between fifty-five percent to seventy percent of maximum continuous power rating**.

Provided that the generating units which are not capable to comply with this regulation, shall comply with the same **within one year** of the notification of these regulations..."

7(2) "...The coal based thermal power generating units shall achieve ramp rate capability of **minimum one percent per minute for their operation between forty percent to fifty-five percent of maximum continuous power rating** as per phasing plan mentioned in the sub-regulation (2) of regulation 5 of these regulations.."

Thermal Flexibilization – Policy Initiatives

- Central Electricity Authority Phasing Plan (draft) for Implementation of 40% Technical Minimum Level, May 2023
 - Pilot Phase (May 2023 Dec 2023)
 1st Phase (July 2024 Jun 2026)
 2nd Phase (July 2026 Jun 2028)
 3rd Phase (July 2028 Dec 2029)
 4th Phase (Jan 2030 Dec 2030)
- 11 units of central/state/pvt. sector to be considered in Pilot Phase
- Units commissioned between Jan 2016 and Dec 2022 in 1st
 Phase
- Units commissioned between Jan 2011 and Dec 2015 in 2nd Phase
- Unit commissioned between Jan 2001 and Dec 2010 in 3rd Phase
- Remaining units commissioned up to Dec 2000 in 4th Phase

Draft Phasing Plan for achieving 40% Technical Minimum Load (TML)

The inconsistency and intermittency of solar & wind power has to be managed by flexible power from other sources in order to ensure security, reliability and stability of electricity grids. Coal-fired power plants are capable to provide comparatively cheaper flexible power in the grid. Thus, flexible operation of coal fired unit is essential for handling the instability of renewable generation by tuning of control system or few retrofitting.

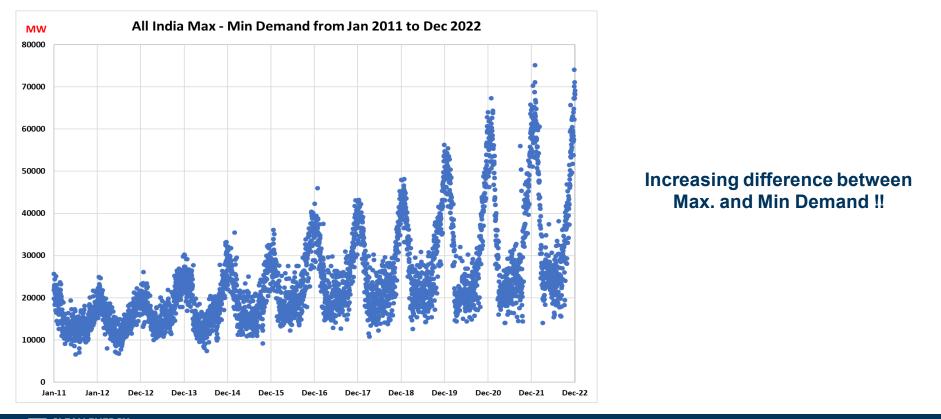
The flexibilisation of coal fired units shall have to be done in phased manner looking at 597 units of 213.55 GW capacity to be refurbished. The preliminary phasing has been worked out in the **CEA report "Flexibilisation of coal fired power plant - A road map for achieving 40% technical minimum load" published in Feb 2023.** Wherein, it was proposed to be accomplished in four phases based on the date of commissioning of the units. Before first phase there is a *pilot phase* which shall be an experience gaining phase, in which few thermal units from central/state/pvt utilities shall be considered for refurbishment. The subsequent phases shall have to be fine-tuned considering the above mentioned aspects. The comprehensive phasing plan has been prepared considering various factors as mentioned below:

Source: https://cea.nic.in/wp-content/uploads/news_live/2023/05/Draft_phasing_plan_merged_letter.pdf

Recent Pilot Initiatives

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

- USAID-GTG-RISE Pilot on Coal based Flexible Generation in Gujarat
 - Two (2) units of Gujarat State Electricity Corporation Limited (GSECL) Ukai thermal power station (Unit # 4, 200 MW and Unit #6, 500 MW).
 - Unit Flexibility Assessment Tests were conducted in March, 2020 to study the response pattern of the units for:
 - Different load ramping rates [at 1%/minute and 3%/minute]
 - Low load operation [test was conducted at 40% Technical Minimum)



https://www.gtg-india.com/wpcontent/uploads/2020/10/USAID-GTG-RISE-Pilot-on-Coalbased-Flexible-Generation Summary-Report-Revised.pdf

- Selection and Incentivization of thermal stations and units for flexible operations
 Size, make of main components, age, coal quality, location, design and variable cost
- Implementation of 40% Technical Minimum Level as per Phasing Plan
- Incremental costs due to flexibilization to be factored in (especially at state level)
 - Low load and cyclic operations
 - Life cycle damage costs and increased operational expenditures
- Adaptability and willingness of generation utilities to embrace and prepare for future as more units are subjected to low load and cyclic operations.
 - Capacity building, knowledge dissemination and executive exchanges

Growing Need for Flexibility – Difference b/w Max. and Min. Demand

CLEAN ENERGY SOLUTIONS CENTER ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

• CERC Grid Code – 4th Amendment, Regulations 2016

"...The technical minimum for operation in respect of a unit or units of a Central Generating Station of inter-State Generating Station shall be 55% of MCR loading or installed capacity of the unit of at generating station...."

Beneficiaries (DISCOMs) compensate for the Heat rate degradation

S. No.	Unit loading as a percentage % of installed capacity of the unit	Increase in SHR for supercritical units (%)	Increase in SHR for sub – critical units (%)		
1	85-100	Nil	Nil		
2	75-84.99	1.25	2.25		
3	65 -74.99	2	4		
4	55-64.99	3	6		

• CERC Grid Code – 4th Amendment, Regulations 2016

"... In case of coal / lignite based generating stations, the following Auxiliary Energy Consumption degradation or actual, whichever is lower, shall be considered for the purpose of compensation...."

Beneficiaries (DISCOMs) compensate for the Heat rate degradation

SI. No	Unit Loading (% of	% Degradation in		
	MCR)	AEC admissible		
1.	85 – 100	NIL		
2.	75 – 84.99	0.35		
3.	65 – 74.99	0.65		
4.	55 - 64.99	1.00		

• CERC Grid Code – 4th Amendment, Regulations 2016

"...Where the scheduled generation falls below the technical minimum schedule, the concerned CGS or ISGS shall have the option to go for reserve shut down and in such cases, start-up fuel cost over and above seven (7) start / stop in a year shall be considered as additional compensation based on following norms or actual, whichever is lower.."

Unit Size (MW)	Oil Consumption per start up (KI)					
	Hot	Warm	Cold			
200/210/250 MW	20	30	50			
500 MW	30	50	90			
660 MW	40	60	110			

Monthly Heat Rate Compensation Accounts

	Calcula	tern Region: Compensati ation period fron ECR & Cumula	ion Calculatio n 01-04-2021 t	on 31-5-2021		
Station	Cumulative Energy(MWh)		ECR(DC) (Rs/kWh)	ECR(A) (Rs/kWh)	ECR(N) (Rs/kWh)	Final Compensation (Rs Lakh)
DADRI TPS	3955.003767	3.051	2.973	3.026	2.973	193.23304
DADRI-II TPS	6613.756648	3.198	3.054	3.160	3.054	718.63814
IGSTPS-JHAJJAR	8955.133314	3.507	3.350	3.556	3.350	1501 21385
UNCHAHAR-I TPS	3132.541747	3.337	3.186	3.369	3.186	6 Compensa
UNCHAHAR-II TPS	3503.062797	3.392	3.239	3.441	3.239	and Auxilian
UNCHAHAR-III TPS	1413.057179	3.383	3.230	3.428	3.230	
UNCHAHAR-IV TPS	4747.228589	3.169	3.027	3.097	3.027	As per Detailed O

ECR (SE): Energy Charge Rate in rupees/kWh based on degraded SHR and AEC as per regulation considering average unit loading of generating station during the ECR (DC): Energy Charge Rate in rupees/kWh based on degraded SHR and AEC as per regulation considering average declared capacity as average unit loading di

ECR (A): Energy Charge Rate in rupees/kWh based on actual parameters SHR and AEC during the calculation period ECR (N): Energy Charge Rate in rupees/kWh based on normative parameters of SHR and AEC during the calculation period 6 Compensation for Degradation of Heat Rate(SHR) and Auxiliary Energy Consumption (AEC)

As per Detailed Operating Procedure on Reserve Shutdown and Compensation Mechanism issued on 05-05-2017 by Hon'ble CERC.

From Date: 2021-04-01 , To Date: 2021-09-30

6.1 Information used for ECR calculation

Entity	Not CUD	Normative SFC (ml/kWh)	CVSF (kCal/ml)	LPPF (Rs./MT)		Normative LC (kg/kWh)	LPL (Rs./kg)	Normative Aux. Cons (%)	CVPF (kCal/kg)	Actual GHR / SHR (kCal/kWh)	Actual SFC (ml/kWh)	Actual	Actual Aux. Cons (%)
KudgiSTPS1	2221.240	0.500	9.388	5266.290	50007.810	0.000	0.000	6.250	3591.040	2259.000	2.011	0.000	7.690
NLC1EXPN	2720.000	1.000	9.673	2132.240	42128.660	0.000	0.000	8.500	2675.000	2718.000	0.456	0.000	8.590
NLC21	2890.000	1.000	10.112	2132.239	44274.000	0.000	0.000	10.000	2628.000	2883.000	0.481	0.000	9.320
NLC22	2890.000	1.000	10.117	2132.239	43323.000	0.000	0.000	10.000	2627.000	2885.000	0.621	0.000	9.510
NLC2EXPN	2559.940	1.000	10.018	2132.239	46094.886	0.046	4.077	10.000	2635.361	2561.140	1.257	0.046	15.011
NNTPP	2481.725	1.000	9.783	2132.240	44013.460	0.000	0.000	6.250	2621.740	2634.020	1.090	0.000	6.870
NTECLVallurSTPS	2358.840	0.500	9.322	3904.244	49776.291	0.000	0.000	6.250	3193.118	2304.170	0.457	0.000	7.770
NTPL	2358.840	0.500	9.774	4472.313	43679.000	0.000	0.000	5.750	3762.447	2523.843	0.392	0.000	7.431
RamagundamSTPS12	2401.300	0.500	9.939	3829.848	39144.210	0.000	0.000	7.040	3736.000	2387.000	0.040	0.000	7.010
RamagundamSTPS3	2390.000	0.500	9.939	3829.848	39144.210	0.000	0.000	6.250	3736.000	2385.000	0.000	0.000	6.430
SimhadriSTPS1	2390.000	0.500	9.332	3567.700	49247.190	0.000	0.000	5.750	3125.940	2471.327	0.472	0.000	6.308
SimhadriSTPS2	2359.450	0.500	9.318	3561.910	50984.160	0.000	0.000	5.750	3120.810	2452.803	0.839	0.000	6.358
TalcherSTPS2	2390.000	0.500	9.997	1945.270	41096.391	0.000	0.000	6.250	3090.000	2403.000	0.350	0.000	6.060

• CERC (Terms and Conditions of Tariff) Regulations, 2019

□ Financially incentivize generators to provide ramping capability beyond the threshold of 1% and to penalize in case of failure to provide 1%, in terms of return on equity.

"…Proviso (iii)to regulation 30(2) of CERC (Terms and Conditions of Tariff) Regulations, 2019 (applicable to generators whose tariff is determined by CERC) "in case of thermal generating stations with effect from 1.4.2020:

- a) Rate of return on equity shall be reduced by 0.25% in case of failure to achieve the ramp rate of 1% per minute;
- b) An additional rate of return on equity of 0.25% shall be allowed for every incremental ramp rate of 1% per minute achieved over and above the ramp rate of 1% per minute, subject to ceiling of additional rate of return on equity of 1%..."

Central Electricity Authority (Technical Standard for Construction of Electrical Plant and Electrical Lines, 2022) requires:

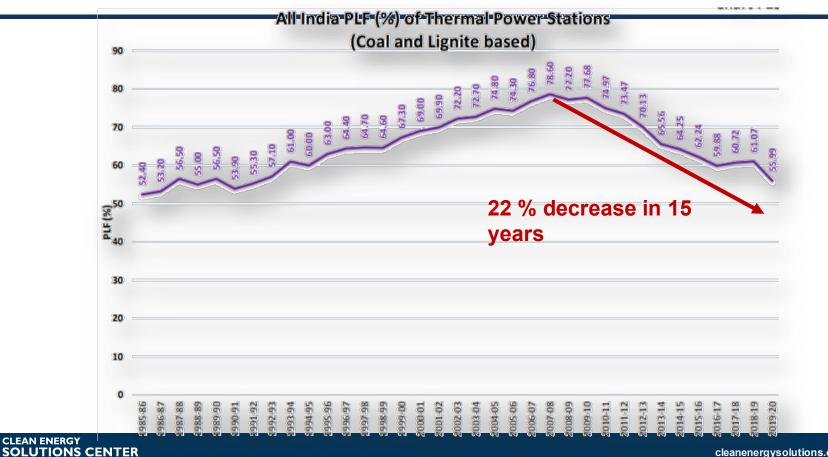
"...The steam turbine shall be designed for a minimum of **four thousand hot starts**, **one thousand warm starts** and **one hundred fifty cold starts** during its life..."

a. Hot starts (less than 10 hours of unit shutdown): 4000
b. Warm starts (between 10 and 72 hours of unit shutdown): 1000
c. Cold starts (greater than 72 hours of unit shutdown): 150..."

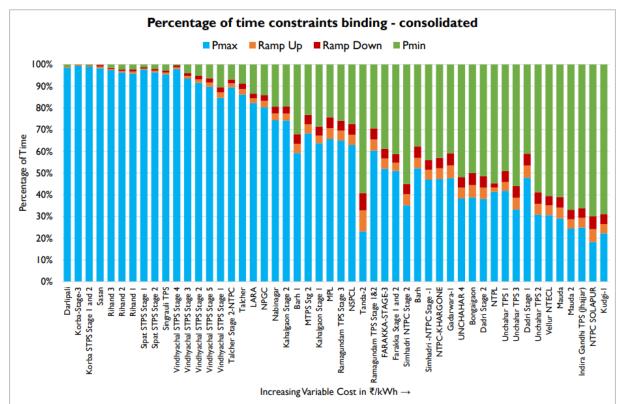
Central Electricity Authority (Flexible Operation of Coal based Thermal Power Generating Units) Regulations, 2023 requires thermal generators to be capable of providing 1%–3% ramp rate

7(1) "...The coal based thermal power generating units shall have ramp rate capability of **minimum three percent per minute for their operation between seventy percent to hundred percent of maximum continuous power rating** and **shall have ramp rate capability of minimum two percent per minute for their operation between fifty-five percent to seventy percent of maximum continuous power rating**.

Provided that the generating units which are not capable to comply with this regulation, shall comply with the same **within one year** of the notification of these regulations..."

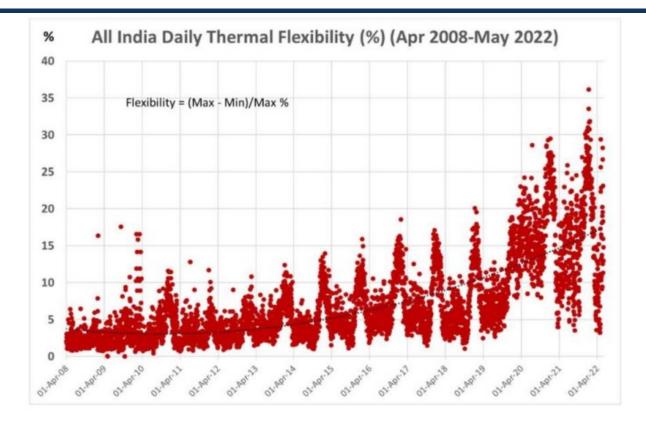

Central Electricity Authority (Flexible Operation of Coal based Thermal Power Generating Units) Regulations, 2023 requires thermal generators to be capable of providing 1%–3% ramp rate

7(2) "...The coal based thermal power generating units shall achieve ramp rate capability of **minimum one percent per minute for their operation between forty percent to fifty-five percent of maximum continuous power rating** as per phasing plan mentioned in the sub-regulation (2) of regulation 5 of these regulations.."

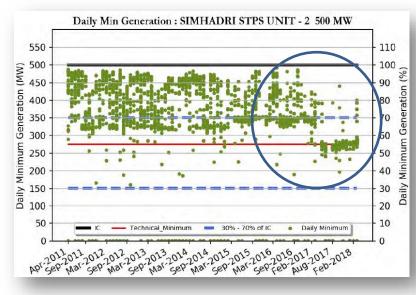


Declining PLF of Thermal Power

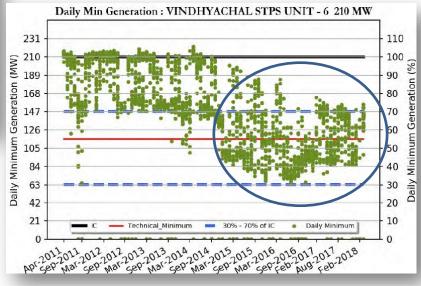
ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

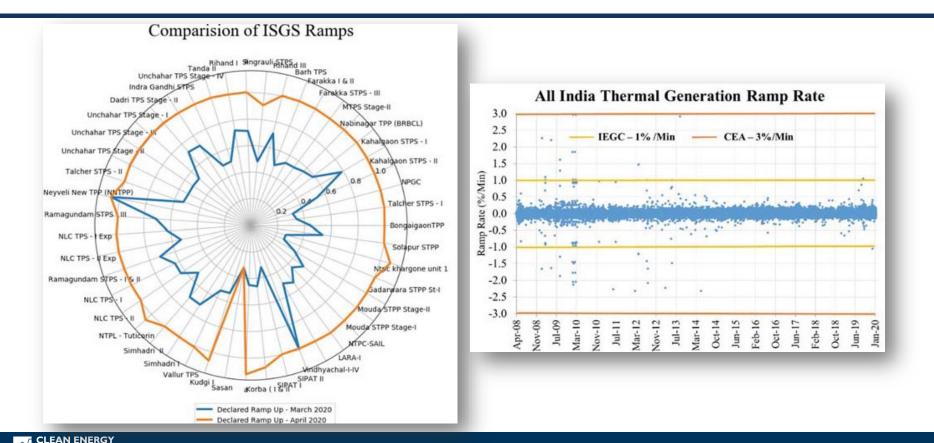

Other Advantages of Thermal Flexibilization

Facilitate Economic Scheduling and Dispatch


Source: SCED Detailed Feedback Report on Pilot, Mar 2022

Thermal Generation Flexibility




Flexibility...Sample Generating Station

Indian Electricity Grid Code, 2016 Amendment Generators responding to incentive for going upto 55 % technical minimum post 2016 !

Response to Incentivization

cleanenergysolutions.org | 61

Connect With Us Online

Clean Energy Solutions Center (CESC)

- Check out our website
- LinkedIn
- CESC updates and event invitations
- Clean Energy Ministerial (CEM)
 - Check out our website
 - LinkedIn
 - Subscribe to the CEM newsletter!

An Initiative of the Clean Energy Ministerial

Thank You!

DO NOT CITE OR REFERENCE. This work is not for distribution or commercial purposes. The methodology, formula, and analysis used and presented in this document and the views herein do not necessarily represent the views of or are endorsed by the U.S. Department of Energy or the U.S. Government, or any agency thereof.