

An Initiative of the Clean Energy Ministerial

Hydrogen and Analytical Tools Webinar Series

February 21, 2024

Housekeeping - Zoom

STING COUNTRIES WITH CLEAN ENERGY POLICY

- This webinar is **being recorded** and will be shared with attendees.
- You will be **automatically muted** upon joining and throughout the webinar.
- Please use the **chat feature** to add comments and share input.
- Please use the **Q&A function** in your toolbar to ask questions.

- You can adjust your audio through the **audio settings.** If you are having issues, you can also dial-in and listen by phone. Dial-in information can be found in your registration email.
- We will be launching a **survey** when the event ends. Your feedback is highly valuable to us!

An Initiative of the Clean Energy Ministerial

Overview of the Clean Energy Solutions Center

Presented by Jal Desai, Clean Energy Solutions Center

The Clean Energy Solutions Center

OBJECTIVE

To accelerate the transition of clean energy markets and technologies.

ACTORS

Leads:

Operating Agent:

Partners:

More than 40 partners, including UN-Energy, IRENA, IEA, IPEEC, REEEP, REN21, SE4All, IADB, ADB, AfDB, and other workstreams etc.

RATIONALE

Many developing governments lack capacity to design and adopt policies and programs that support the deployment of clean energy technologies.

ACTIONS

- Deliver dynamic services that enable expert assistance, learning, and peer-to-peer sharing of experiences. <u>Services are offered at</u> <u>no-cost to users.</u>
- Foster dialogue on emerging policy issues and innovation across the globe.
- Serve as a first-stop clearinghouse of clean energy policy resources, including policy best practices, data, and analysis tools.

AMBITION/TARGET

Support governments in developing nations of the world in strengthening clean energy policies and finance measures

UPDATES

Website:

<u>www.cleanenergyministerial.org/initiativ</u> <u>es-campaigns/clean-energy-solutions-</u> <u>center</u>

Factsheet:

www.nrel.gov/docs/fy22osti/83658.pdf

Requests: Now accepting Ask an Expert requests!

The Clean Energy Solutions Center

<u>Ask an Expert Service</u>

- Ask an Expert is designed to help policymakers in developing countries and emerging economies identify and implement *clean energy policy* and finance solutions.
- The Ask an Expert service features a network of more than **50** experts from over **15** countries.
- Responded to 300+ requests submitted by 90+ governments and regional organizations from developing nations since inception

Training and Capacity Building

• Delivered over **300** webinars training more than **20,000** public & private sector stakeholders.

<u>Resource Library</u>

• Over **1,500** curated reports, policy briefs, journal articles, etc.

For additional information and questions, reach out to Jal Desai, NREL, jal.desai@nrel.gov

An Initiative of the Clean Energy Ministerial

Hydrogen to Support Climate Targets

Presented by Daniella Rough, National Renewable Energy Laboratory

Webinar Speakers

Daniella Rough

International Project Manager
National Renewable Energy Laboratory

Steve Hammond

Senior Research Advisor in the Mechanical and Thermal Engineering Sciences Directorate

National Renewable Energy Laboratory

Pingping Sun

Hydrogen and Electrification Analysis Group Leader

Argonne National Laboratory

Agenda

Speaker	Торіс	Duration
Daniella Rough	Hydrogen for Climate Targets	10 mins
Steve Hammond	Potential for hydrogen, and its derivatives, to decarbonize domestic, commercial, and hard- to-decarbonize sectors	20 mins
Daniella, Steve, Pingping	Q&A	20 mins
Pingping Sun	Overview and demonstration of the greenhouse gases, regulated emissions, end energy use in technologies (GREET) model	30 mins
Daniella, Steve, Pingping	Q&A	25 mins

Hydrogen – Climate's Swiss Army Knife?

You can do almost anything with a Swiss Army Knife...

Global Emissions Abated by Hydrogen by 2050

Hydrogen is an important part of the Net zero Emissions Scenario, but is only one piece of the puzzle

Cumulative emissions reduction by mitigation measure in the NZE, 2021-2050

The Path Toward a Net-Zero Emissions Energy Sector by 2050

Hydrogen Deployment Pathway for a Net-Zero Emissions

- Hydrogen demand is projected to grow (> 5-fold increase from 2020 to 2050)
- Diversified hydrogen demand (new applications, e.g., e-fuels, hydrogen blending, seasonal storage, etc.)
- Increase in decarbonized hydrogen production (new technologies, e.g., renewable-driven water electrolysis)

Global Emissions Abated by Hydrogen by 2050

Hydrogen in Industrial Decarbonization

Steve Hammond, Jen King and "green steel" team February 21, 2024

Photo from iStock-627281636

Outline

1 Industrial Decarb Challenge

2 Iron / Steel

3 E-Fuels

4 Wrap up

Industrial Decarbonization Grand Challenge

U.S. goal: net zero GHG emissions economy-wide by 2050.

Over 50% of industrial emissions come from a disparate range of industries and applications.

CREATING NEW SOLUTIONS FOR HARD-TO-ABATE SECTORS SHARE OF GLOBAL YEARLY CO2 EMISSIONS: 79% 69% Iron & Steel 69% Chemical & Petrochemicals Iron & Steel </ta

Source: Climate Watch, the World Resources Institute (2020)

Decarbonizing hard-to-abate sectors cannot be achieved directly thru electrification.... They need fuels.

Success requires a **holistic** approach, integrating **multiple diverse technologies** and processes that have not previously worked together.

H2@SCALE

U.S. Department of Energy (DOE) initiative that brings together stakeholders to advance affordable hydrogen production, transport, storage, and utilization to enable decarbonization and revenue opportunities across multiple sectors.

H2@SCALE

U.S. produces ten million metric tons of hydrogen annually.

Most of this hydrogen is produced via centralized reforming of natural gas.

Deployments of clean alternatives, such as electrolysis, are rapidly increasing.

Iron and Steel 101

Today: ~8% of global GHG emissions.

2 Routes for U.S. Steel Production:

- Blast Furnace (BF) and
- Electric Arc Furnace
 (EAF)

Challenge: Develop cost competitive, zero emission technologies and infrastructure appropriate for U.S. feedstocks and full spectrum of steel end use products.

High-Level View of Iron/Steel

1. Develop alternatives to the ~30 U.S. Blast Furnaces

2. Scale up the use of Direct Reduction, using H2 rather than methane.

3. Improve approach to scrap preparation to remove impurities (mostly copper).

Full Integrated System Renewables to H2 to Steel

END-USE:

- Simplified diagram
 - Ancillary equipment not depicted

Big Picture: Water, Electricity, H2, and Iron

- It takes about 9L of DI water and 55kWh of electricity to produce 1 kg of H2 in a PEM electrolyzer.
- It takes about 80-120kg of H2 to produce 1 tonne of metallic iron from iron ore.

To replace one blast furnace that produces 1M Tonne metallic iron per year, it takes:

- About 80,000 120,000 tonnes of H2 per year,
- 4,400,000,000 to 6,600,000,000 kWh electricity (about 1 GW), and
- 720,000,000L to 1,080,000,000L DI water (about 2,000 acre-feet)

Iron/Steel production is a "steady-state" industrial process, 7x24x365.

Pipelines and storage provide **essential infrastructure** to get H2 to where it is used and buffer between variable generation and steady state end use.

H2 and Iron

The DOE Industrial Decarbonization Roadmap discusses the important role H2 plays in decarbonizing iron and steel.

The Roadmap is largely silent on the critical role that H2 storage plays.

Using H2 for iron ore reduction, economic viability is reached at an H2 procurement cost of \$1.70 per kg, while achieving a CO2 emission reduction of 76% at the plant site*.

To account for lower quality U.S. iron ores, increased energy for beneficiation, and reduced EAF yields, getting the LCOH <u>delivered</u> closer to \$1/kg will be needed to spur industry change and rapid adoption of low/no carbon processes using clean H2.

^{*} Rosner, Papadias, Brooks, Yoro, Ahluwalia, Autrey, and Breunig, "Green steel: design and cost analysis of hydrogen-based direct iron reduction" ChemRxiv, March 2023.

E-Fuels - First Generation Technologies

First Generation DAC Technologies – Based on either solid adsorbents or liquid absorbents. Relatively high capital expense and operation expense due to non-optimal materials and process configurations. Established Conversion Technologies – Based on either methanol conversion technologies or Fischer Tropsch technologies. Require multiple process steps and separations to generate on-spec fuels.

Lack of Integration - No real integrated demonstration projects utilizing renewable electrons, DAC technologies, and conversion technologies to final fuels such as Jet Fuel.

Conceptual E-fuels Production

- Integrated System: Green Electrons, H2 from water, captured CO2 captured, to generated Fuels and Chemicals.
- E-fuels demonstration system would advance direct air capture technologies of CO2, green hydrogen generation technologies, and emerging conversion technologies.

E-Fuels

Initial e-fuels demand could be driven by aviation. e-fuels will also be used for shipping and rail.

E-chemicals

Potential long-term sink for $CO_{2^{.}}$

E-fuels Production Basics

- Depending on the product it is approximately 0.35 kg of H2 and 2.5 kg of CO2 to generate 1 liter of e-fuels.
- Almost all the electricity draw will be at the electrolyzer.... Splitting water takes effort!
- There will of course be electrical demand for pumps and compressors, but they pail in comparison to the electrolyzer..

System Component	Proportion of Electrical need	Aviation Approximately 55% of current U.S. electricity production needed to displace 100% of U.S. fuel consumption with e-fuels
DAC Unit	7.46%	
Electrolyzer	91.40%	Snipping IEA estimates that around 70 million tonnes
RWGS	0.72%	either ammonia or methanol — requiring between 12.6 million and 14 million tonnes c
Fischer Tropsch	0.49%	H2 — would be required to make up a 10% share of fuels in the maritime sector by 2030

*IEA recent report, *The Role of E-Fuels in Decarbonizing Transport*

iet

Conclusions and Key Insights

U.S. IRA policy is a game changer for H2 production.

- Behind the meter,
 integrated H2 systems
 qualify for the full clean
 45V H₂ \$3/kg credit.
- Absent H2 pipelines...
- H2 storage cost is a potential barrier to industrial decarbonization.

H2 storage plays the key role to buffer between low-cost, clean H2 production from renewables and steady state industrial end uses (iron/steel, e-fuels, etc.)

Renewable resource and industry end use drive required H₂ storage capacity.

Current bulk H2 storage costs range between ~\$0.02/kg (salt caverns) and ~\$2.93/kg (pressure vessel storage).

Low-cost, bulk H2 storage technologies that are ~4x salt caverns is needed for regions that don't have access to geological storage.

Work presented here funded by HFTO and WETO

Open Discussion

www.nrel.gov

Transforming ENERGY

Photo from iStock-627281636

FEBRUARY 21, 2024 PRESENTATION AT CLEAN ENERGY SOLUTIONS CENTER WEBINAR

GREET® Environmental Analysis of Current and Future Hydrogen Production and Utilization in the United States

Pingping Sun, PhD Hydrogen and Electrification Analysis Group Leader

Argonne National Laboratory

Today, more than 10M metric tons of hydrogen are produced in the U.S. annually, mainly from steam methane reforming of natural gas

H2@Scale is a DOE initiative that identifies pathways for production and utilization of clean H₂

Decarbonization analysis tool

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

- Industrial decarbonization is analyzed TEA and LCA, based on process modeling and industrial inputs.
- Process modeling provides energy and emission profiles based on thermodynamics, kinetics, engineering principals, etc.
- Deep understanding of manufacture process and technology is the key to identify decarbonization potential with the consideration of feasibility and economics.

The GREET® (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) model

- With DOE support, Argonne has been developing the GREET life-cycle analysis (LCA) model since 1995 with annual updates and expansions
- It is available for free download and use at greet.es.anl.gov
- >55,000 registered users globally including automotive/energy industries and government agencies
- Will be used for tax credits evaluation of clean H₂ production

FUEL CYCLE (GREET 1 Series)

VEHICLE CYCLE

(GREET 2 Series)

GREET sustainability metrics include energy use, criteria air pollutants, GHG, and water consumption

Energy use	Air pollutants	Greenhouse gases	Water consumption
 Total energy: fossil energy and renewable energy Fossil energy: petroleum, natural gas, and coal Renewable energy: biomass, nuclear energy, hydro-power, wind power, and solar energy 	 VOC, CO, NOx, PM₁₀, PM_{2.5}, and SOx Estimated separately for total and urban (a subset of the total) emissions 	 CO₂, CH₄, N₂O black carbon, and albedo CO_{2e} of the five (with their global warming potentials) 	 Addressing water supply and demand (energy-water nexus)
Resource availability and energy security	Human health and environmental justice	Global warming impacts	Regional/seasonal water stress impacts

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Hydrogen production via CH₄ reforming, w/ and w/o CCS

Hydrogen production via water electrolysis

SOLUTIONS CENTER

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

Well-to-gate (WTG) GHG emissions of hydrogen production pathways

12.0 3% CH₄ leakage 10.0 ⊥ 0.7% CH₄ leakage [kg_CO_{2e}/kg_H₂] 8.0 Illustrative-Actual emissions will vary by facility SMR= Steam Methane depending on system design and location Reforming: 6.0 CCS=Carbon Capture and Sequestration; LTE=Low-Temp Electrolysis; 4.0 HTE=High-Temp Electrolysis; LFG=Landfill Gas 2.0 SMRH2^{WISteamcredits1} SMRH2^{WICS} Coa^{WICS} Nuclear Lth Nuclear Lth Solar H2 So

https://greet.es.anl.gov/files/hydrogenreport2022

Embodied emissions of power generation CapEx is important for H₂ production via electrolysis

- Analyze emissions from renewable and nuclear power infrastructure manufacturing and construction, and associated upstream material production
 - Reflect recent progress in renewable power

technologies

- Analyze key parameters affecting lifetime electricity generation
- Compare embodied emissions of different power

generation technologies (in functional unit of

per

Incorporate embodied emissions

analysis of power infrastructure in Row material extraction Material processing

GREET

Installation, operation and maintenance

CapEx embodied GHG emissions of low-carbon power generators and water electrolyzers

SOEC=Solid Oxide Electrolysis Cell PEMEC=Polymeric Exchange Membrane Electrolysis Cell AEC=Alkaline Electrolysis Cell

Embodied GHG emissions of different electricity infrastructure (per kWh of electricity)

Publications forthcoming

Impact of CapEx embodied GHG emissions on renewable H₂ production

Publications forthcoming

Hydrogen delivery involves energy intensive processes such as compression, liquefaction and trucking

WtW GHG emissions of SMR-H₂ relative to diesel varies by fuel economy ratio of FCEVs with conventional ICEVs (results shown for gaseous H₂ delivery)

H₂ liquefaction is energy and cost intensive

- Scaling laws based on aggregation of industry input
 - Liquefier CAPEX
 - Specific energy consumption (<u>SEC</u>)
- Modeling and analysis in the literature suggest SEC can potentially be as low as 6 kWh/kg

<u>SLC</u> – Specific liquefaction cost

Liquefier Capacity (tonne / day)

Delivered	Liquefier	SLC	SEC	GHG Emissions 2021 (US mix)
	5 tpd	\$4.0 / kg-LH2	11 kWh / kg	4.8 kgCO _{2e} / kgH ₂
30 tpd	33 tpd	\$2.8 / kg-LH2	9.4 kWh / kg	4.1 kgCO _{2e} / kgH ₂
120 tpd	130 tpd	\$2.1 / kg-LH2	8.2 kWh / kg	3.6 kgCO _{2e} / kgH ₂

6

12

kg-LH2

kwh /

Cradle-to-Grave (C2G) includes both WtW and vehicle manufacturing emissions

https://greet.anl.gov/publication-c2g_lca_us_ldv

Refinery CO₂ reduction opportunities

- Refinery CO₂ emission is intensive, owing to extensive combustions at various supply stages.
- Decarbonization opportunities exist for onsite emission, WTG and WTW.
 - Switching fossil-based energy sources to renewable or low carbon sources, e.g. switching NG and grid electricity to RNG and clean electricity.
 - Implementing CO₂ capture and storage.
 - Replacing or blending crude oil with fungible biocrude or low carbon crude oil.

An Analysis of the Potential and Cost of the U.S. Refinery Sector Decarbonization

Pingping Sun,[#] Vincenzo Cappello, Amgad Elgowainy, Pradeep Vyawahare, Ookie Ma, Kara Podkaminer, Neha Rustagi, Mariya Koleva, and Marc Melaina

Cite This: Environ. Sci. Technol. 2023, 57, 1411–1424 Read Online

U.S. refinery decarbonization potential based on 2019 refinery operation data

Ammonia as fertilizer, fuel and H₂ carrier

Techno-economic analysis

Steel production using hydrogen in DRI technology

Cost and Life Cycle Analysis for Deep CO2 Emissions Reduction for Steel Making: Direct Reduced Iron Technologies - Zang - steel research international - Wiley Online Library

e-methanol as chemical, fuel, H₂ carrier

Conversion process modeling

1.0

0.8

Methanol (\$/kg) 70 70

0.2

0.0

- Methanol can be synthesized by using CO₂ and H₂ via RWGS and methanol reaction
- $CO_2 + H_2 \rightarrow syngas \rightarrow methanol$

Well-to-gate GHG emissions

https://pubs.acs.org/doi/10.1021/acs.est.0c08237

e-fuels via Fischer-Tropsch (FT) process using H₂ + CO₂

FT fuel (\$/gal)

of

MFSP*

- FT fuels can be synthesized by using CO₂ and H₂ via RWGS and FT reaction
- MODI-td-gatesymposised fissions fuels

Conversion process modeling

Techno-economic analysis

H₂ Blending with natural gas: Energy, Environmental and economic Implications

Life cycle GHG emissions – Low-carbon H_2 (LTE with nuclear power)

- For a **constant energy delivery scenario**, T&D emissions increased with the H₂ content due to higher compression energy demand and fugitive emissions partially offsetting the benefit of blending zero carbon H_2
- The net life cycle emissions are still reduced (-6%) at x_{H2} =30% due to lower H₂ upstream and combustion emissions • of blend

Maintaining energy throughput

Hydrogen TEA and LCA at Argonne have been supported by DOE's Office of Energy Efficiency and Renewable Energy's Hydrogen and Fuel Cell Technologies Office (HFTO) for over two decades

Thank You! aelgowainy@anl.gov

Our models, tutorials and publications are available at: <u>https://greet.es.anl.gov/</u> <u>https://hdsam.es.anl.gov/</u>

ASSISTING COUNTRIES WITH CLEAN ENERGY POLICY

An Initiative of the Clean Energy Ministerial

Thank you!

Questions? Contact Expert@CleanEnergySolutions.org.

The next installment in this series will focus on technical considerations.

Register today!