Clean Energy Ministerial CCUS Initiative Webinar
A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage

Tuesday 21 January 2020
08:00 EST | 14:00 CET
SOME HOUSEKEEPING ITEMS

Two Options for Audio (select audio mode):

1. Listen through your computer.
 - Please select the “mic and speakers” radio button on the right hand audio pane display

2. Listen by telephone.
 - Please select the “telephone” option in the right-hand display, and a phone number and PIN will display.

3. Panelists - Please mute your audio device when not presenting

4. Technical Difficulties:
 - Contact the GoToWebinars Help Desk: 888.259.3826
To ask a question
- Select the ‘Questions’ pane on your screen and type in your question

Share with others or watch it again
- A video/audio recording of this Webinar and the slide decks will be made available at:
 https://www.youtube.com/user/cleanenergypolicy
Follow us on LinkedIn and Twitter

https://www.linkedin.com/company/clean-energy-ministerial-ccus-initiative/

@ccuscem

cemccus@outlook.com
AGENDA

1. Welcome & Introductory Remarks

2. Presentation
 - Jarad Daniels
 Director, Office of Strategic Planning, Analysis, and Engagement
 U.S. Department of Energy
 - Guy Powell
 Carbon Capture and Storage Venture Executive
 Exxon Mobil Corporation
 - Nigel Jenvey
 Global Head of Carbon Management
 Gaffney, Cline & Associates

3. Question and Answer Session
Jarad Daniels leads the Office of Strategic Planning, Analysis, and Engagement within the Department of Energy (DOE) Office of Fossil Energy, including domestic programs and international engagements conducted in close collaboration with industry, academia, and multi-lateral organizations.

Mr. Daniels has twenty-five years of experience with the DOE, managing advanced technology programs and working in several national laboratories throughout the United States. His expertise includes domestic and global energy and environmental technologies, policies, and programs.

Mr. Daniels holds a Master of Science degree in Chemical Engineering from the University of California at Berkeley.
Guy Powell
Carbon Capture and Storage Venture Executive
Exxon Mobil Corporation

Guy received his Bachelor of Science degree in Electrical Engineering from Mississippi State University in 1990 and joined Exxon Company U.S.A. as a Project Engineer at the Baton Rouge Refinery in Louisiana. Guy has subsequently worked in a variety of technical, refinery operations, planning and business development roles of increasing responsibility for the Corporation’s downstream businesses in the U.S.A. and Europe.

In 2014 Guy joined ExxonMobil’s Corporate Strategic Planning organization in Irving, TX as the Corporation’s Greenhouse Gas Manager. In 2018 he assumed his current position as ExxonMobil’s Carbon Capture and Storage (CCS) Venture Executive, responsible for oversight of strategy, policy, advocacy, technology, and business development for ExxonMobil’s global CCS activities.

Guy is married, has two daughters and is now based in Houston TX.
Nigel Jenvey
Global Head of Carbon Management
Gaffney, Cline & Associates

Nigel has over 23 years of global oil and gas industry experience in technology, exploration, development and production operations with major oil and gas operating companies. He is an industry leader in Carbon Management and expert in Carbon Capture, Use and Storage (CCUS) having previously held roles such as the chair of the CO2 Capture Project, chair of the North American CCS Association, and program chair of the Society of Petroleum Engineers CCUS Technical Section.

At Gaffney, Cline & Associates, Nigel leads the new global Carbon Management practice to help customers understand the wide variety of options available that will ensure continued business success through the energy transition.

Nigel graduated from Imperial College, London with a Master’s degree in Petroleum Engineering, and from The University of Leeds, UK with a Bachelor’s degree with honors in Mining Engineering. Nigel now lives in Houston, Texas with his wife and 2 children.
Meeting the Dual Challenge: A Roadmap to At-Scale Deployment of Carbon Capture, Use, and Storage

www.dualchallenge.npc.org

Clean Energy Ministerial
January 21, 2020

Guy Powell, ExxonMobil
Nigel Jenvey, Gaffney-Cline
In September 2017

The Secretary of Energy requested the NPC conduct a study

• Define the potential pathways for integrating CCUS at scale into the energy and industrial marketplace.

• The Secretary asked the Council to consider:
 – Technology options and readiness
 – Market dynamics, economics and financing
 – Cross-industry integration and infrastructure
 – Policy, legal and regulatory issues
 – Environmental footprint
 – Public acceptance
The request asked five key questions

1. What are **U.S. and global future energy demand outlooks**, and the environmental benefits from the application of CCUS technologies?

2. What **R&D, technology, infrastructure, and economic barriers** must be overcome to deploy CCUS at scale?

3. How should **success be defined**?

4. What actions can be taken to **establish a framework that guides public policy and stimulates private-sector investment** to advance the deployment of CCUS?

5. What **regulatory, legal, liability or other issues should be addressed** to progress CCUS investment and to enable the U.S. to be global technology leaders?
Study participation

- The Coordinating Subcommittee has membership of 22 individuals representing upstream and downstream oil & gas, LNG, biofuels, power, EPC, NGO, and state and federal governments.

- The overall study team is currently composed of over 300 participants from more than 110 different organizations and includes 17 international members.

- National Coal Council participation is represented through overlap of 21 organizations.
NPC study report

Executive Summary (Volume 1)
- Transmittal letter
- Report outline
- Preface
- Executive Summary, Roadmap and Recommendations

Appendices
A. Request Letter and NPC Description
B. Study Group Rosters

Executive Summary (Volume 1)

Findings and Recommendations

CCUS Deployment At-Scale (Volume 2)
- **Chapter 1**: The Role of CCUS in Future Energy Mix
- **Chapter 2**: CCUS Supply Chains & Economics
- **Chapter 3**: Policy, Regulatory & Legal Enablers
- **Chapter 4**: Stakeholder Engagement

Appendices
C. CCUS Project Summaries
D. Integrated Economic Analysis

CCUS Technologies (Volume 3)
- **Technology Introduction**
- **Chapter 5**: CO₂ Capture
- **Chapter 6**: CO₂ Transport
- **Chapter 7**: CO₂ Geologic Storage
- **Chapter 8**: Enhanced Oil Recovery
- **Chapter 9**: CO₂ Use

Appendices
E. Mature CO₂ Capture Technologies
F. Emerging CO₂ Capture Technologies
G. CO₂ EOR Case Studies
H. CO₂ EOR Economic Factors and Considerations

List of Topic Papers
Abbreviations, Units, Glossary

Full Report

Meeting the Dual Challenge
Assessed the costs to capture, transport and store 850 point sources of emissions comprising 80% (~2Gt) of all U.S. stationary sources:

- Cost to capture, transport, and store one tonne of CO$_2$ plotted against the volume of CO$_2$ abatement possible
- Source, industry, and location specific
- Costs and performance based on Nth of a kind technology currently available and deployed
- Transparent assumptions, leveraging existing studies combined with industry experience
- Identifies level of value (incentives, revenue, etc.) necessary to enable deployment based on the following financial assumptions:
 - Asset Life: 20 years
 - IRR: 12%
 - Equity Financing: 100%
 - Inflation Rate: 2.5%
 - Federal Tax Rate: 21%
CCUS cost assessment: methodology

U.S. CCUS Costs by Point Source
($ / tonne of CO₂)

Example Source Costs by Type
- Capture ($ / tonne CO₂)
- Transport + Storage ($ / tonne CO₂)

Financial Assumptions
- Asset Life: 20 year
- IRR: 12%
- Equity Financing: 100%
- Inflation Rate: 2.5%
- Federal Tax Rate: 21%

A. Includes project capture costs, transportation costs to defined use or storage location, and use/storage costs; does not include direct air capture
B. This curve is built from bars that each represent an individual point source with a width corresponding to the total CO₂ emitted from that individual source
C. Total point sources include ~600 MTPA of point sources emissions without characterized CCUS costs
D. Widths of bars are illustrative and not indicative of volumes associated with each source
CCUS cost assessment: role of R&D

U.S. CCUS Costs by Point Source
($ / tonne of CO₂)

Notional technology cost improvements (10% to 30%) expected from technology advances supported by continued R&D

Financial Assumptions
- Asset Life: 20 year
- IRR: 12%
- Equity Financing: 100%
- Inflation Rate: 2.5%
- Federal Tax Rate: 21%

Meeting the Dual Challenge
Recommendations:
- IRS/Treasury should clarify Section 45Q
- DOI and states should establish a process for access to and use of pore space
- EPA should shorten period of Class VI permit process and revise to be risk and performance-based
Meeting the Dual Challenge

Expansion phase

U.S. CCUS Costs by Point Source
($ / tonne of CO$_2$)

Recommendations:
- Congress should:
 - Extend / Expand 45Q
 - Expand access to Section 48 tax credits
 - Expand use of MLPs, PABs TIFIA eligibility/funding
 - Increase support for well permitting
 - Allow geologic storage in federal waters from all CO$_2$ sources
- DOE & DOI should implement process for pore space access
- DOE should create CO$_2$ pipeline working group for development of large scale CO$_2$ pipeline infrastructure
- DOE should convene stakeholder forum to address geologic storage long-term liabilities
- State policymakers should enable access to pore space on private lands
At-scale phase

Recommendation:
- Congress should implement economic policies amounting to about $110/tonne; the evaluation of those policies should occur concurrently with the expansion phase.
Increasing understanding and confidence in CCUS as a safe and reliable technology is essential for public and policy stakeholder support. The oil and natural gas industry is uniquely positioned to lead CCUS deployment due to its relevant expertise, capability, and resources.

Recommendations:

- Industry, governments and NGOs should work together to build confidence that CCUS is safe, secure, and critical to managing emissions.
- The oil and natural gas industry should remain committed to improving its environmental performance.
- The oil and natural gas industry should continue to investment in CCUS, specifically:
 - Current and next generation capture facilities
 - Development of new technologies
 - CO₂ pipeline infrastructure needed for EOR and saline storage
 - R&D for advancing CCUS technologies
Key messages

• CCUS refers to the complete supply chain needed to capture, transport and permanently use or store CO$_2$, eliminating it from the atmosphere.

• All credible future energy scenarios recognize that fossil fuels will remain part of the total energy mix for the next several decades.

• CCUS is essential to addressing the dual challenge of providing affordable, reliable energy to meet the world’s growing demand while addressing the risks of climate change.

• The United States is the world leader in CCUS and uniquely positioned to deploy the technologies at scale.

• To achieve CCUS deployment at scale, the U.S. government will need to reduce uncertainty on existing incentives, establish adequate additional incentives, and implement a durable regulatory and legal environment that drives industry investment.

• A commitment to CCUS must include a commitment to continued research, development, and demonstration.

• At-scale CCUS deployment could create a new industry, driving job creation and economic growth across the nation.

• Increasing understanding and confidence in CCUS as safe and reliable is essential for public and policy stakeholder support.
QUESTION AND ANSWER SESSION

Jarad Daniels
Director, Office of Strategic Planning, Analysis, and Engagement
US Department of Energy

Guy Powell
Carbon Capture and Storage Venture Executive
Exxon Mobil Corporation

Nigel Jenvey
Global Head of Carbon Management
Gaffney, Cline & Associates

Webinar recordings provided on YouTube
https://www.youtube.com/user/cleanenergypolicy
Follow us on LinkedIn and Twitter

https://www.linkedin.com/company/clean-energy-ministerial-ccus-initiative/

@ccuscem

cemccus@outlook.com
Our next webinar:

“Carbon Capture, Utilization and Storage in China”

Thursday 5 March 2020
08:00 EST / 14:00 CET / 21:00 CST
CARBON CAPTURE, UTILIZATION & STORAGE
ACCELERATING CCUS TOGETHER
AN INITIATIVE OF THE CLEAN ENERGY MINISTERIAL
Clarifying existing tax policy and regulations could activate an additional 25 to 40 million tons per annum (Mtpa) of CCUS, doubling existing U.S. capacity within the next 5 to 7 years.

Recommendations

Agency Action & Rulemaking:

- IRS/Treasury to clarify Section 45Q
- DOI and states to establish a process for access to and use of pore space
- EPA should shorten period of Class VI permit process
- EPA to review Class VI permit process to be site-specific risk and performance-based

note: 25-40 mtpa is likely overstated based on current 12 year life of 45Q tax credit – the increase to 20 years does not come until Expansion phase
Extending and expanding current policies and developing a durable legal and regulatory framework could enable the next phase of CCUS projects (an additional 75-85 Mtpa) within the next 15 years.

Recommendations

Congress to:
- Amend 45Q
- Expand access to Section 48 tax credits
- Expand use of MLPs, private activity bonds, and TIFIA eligibility/funding
- Increase funding to support well permitting and timely reviews
- Allow geologic storage in federal waters from all CO₂ sources

Agencies to:
- DOE & DOI to implement process for pore space access
- DOE to create CO₂ pipeline working group for development of large scale CO₂ pipeline infrastructure
- DOE to convene stakeholder forum to address geologic storage long-term liabilities
- State policymakers enable access to pore space on private lands

Graphical Information:
- Cumulative annual CCUS Volume
- ~$175 B investment (cumulative)
- ~$9 B pipeline infrastructure investment (cumulative)
- ~40K annual jobs (cumulative)
- 23% of US oil system by volume
Achieving CCUS deployment at scale, an additional 350-400 Mtpa, in the next 25 years will require substantially increased support driven by national policies.

Recommendation:
To achieve at-scale deployment, congressional action should be taken to implement economic policies amounting to about $110/tonne. The evaluation of those policies should occur concurrently with the expansion phase.

- Cumulative annual CCUS Volume
- ~$680 B investment (cumulative)
- ~$28 B pipeline infrastructure investment (cumulative)
- ~230K annual jobs (cumulative)
- 76% of US oil system by volume