

Common barriers to sustainable health facility electrification

Carolina Barreto, D. Eng | Renewable Energy Manager Tetra Tech | Complex World, Clear Solutions[™] USAID Contractor Powering Healthcare Webinar. | July 19th 2016

Main issues with energy infrastructure in Haiti

Power Availability

- Unreliable grid
- Off grid
- Diesel generators
- Need for battery back-up systems; possible solar PV...

Power Quality

- Low voltage
- Voltage
 fluctuation
- Surges
- Sensitivity of laboratory equipment

Electrical Installations

- Poor, even dangerous, wiring
- Lack of maintenance
- Bad habits
- Unskilled technicians
- Ad hoc solutions

Poor, even dangerous, wiring

Electrical load distribution panels: unhelpful and unsafe

The protection covers of load distribution panels are often missing and the wiring is messy.

Lack of maintenance

Batteries terminals are corroded. Distilled water may or may not be added occasionally.

The generator room is not clean, causing a potential fire hazard and making it difficult to identify leaks.

Burned generators or equipment

Example at Saint Antoine de Jérémie Hospital, Grand'Anse

Battery rooms are often not appropriate

Need ventilation (battery gases) and access space for maintenance (add water, brush electrodes, check voltage).

Volts

Haiti grid power – voltage variations

La Fossette, EDH – July 2012

Haiti grid power – poor coverage over time

Effects of poor energy infrastructure:

Decrease in Service

- Reduced operating hrs; unserved population
- Reduced capacity for lab tests
- Nighttime safety concerns
- Decline in morale of medical/lab staff

High Cost

- Generator fuel costs
- Damage to expensive instruments
- Data loss
- Medicine spoilage
- Need to redo lab tests
- Decline in morale of technical staff

1 – Energy needs assessments

Energy Assessments: actual electrical load variation

2 - Technology

Battery-Inverter systems

LED lighting retrofit

Electrical wiring improvements

Battery-Inverter backup power systems

Standard designs:

- --- OutBack inverters
- --- Rolls-Surrette batteries

The inverter-charger:

- Grid (or generator) power available
 → Charges the batteries (AC to DC)
- No grid or generator power
 → Batteries provide power (DC to AC)

Contact vs. No-Contact

IHFlinstalled 33 battery-inverter backup power systems in 8 departments

LED lighting retrofit demo

Hôpital de la Communauté Haïtienne (HCH), Port-au-Prince

Existing lighting

- 180 T12 fluorescent lamps -- typical
- 24/7 lighting *if power available*
- 44W per lamp *high consumption*
- 66 lumens/W *low efficacy*

4-ft LED replacement tubes

- LED international standards
- 90 lumens/W high efficacy
- 50% reduction in electricity use
- 2-year payback

Source: ASAMLED, 2012

Electrical wiring improvement

Hôpital Universitaire d'Etat d'Haiti (HUEH), Port-au-Prince

Emergency room

Installation of ceiling lamps, outlets and fans

After

3 - Institutions

Partners

- Haitian Ministry of Public Health and Population
 - (MSPP)'s Project Unit (UGP)
 - National Reference Laboratory (LNSP)
- CDC

Institutional Activities

- Standard designs, ToR template
- Monitoring/communications database
- Supervision of local installation companies
- USAID environmental compliance
- US National Electrical Code compliance

Guyana Health Facilities Intervention

- Remote hospitals and clinics
 - Two standard PV systems designed based on assessment loads – 1kW and 1.25kW
 - Local installers bid for installation at 9 sites

Results: 12 Installations completed by June 2013

Partners

- Guyana Energy Agency (GEA)
 - Ministry of Health

IHFI -- Haiti Improving Health Facility Infrastructure

Support Path for the Solar Systems at the Health Facilities in Haiti

Hospital technicians

- Hospital technicians attend level 1 and 2 trainings to perform O&M.
- Provides basic maintenance to the batteries and generators.
- Request distilled water to the hospital director
- Request battery replacement to the director
- Request other technical assistance he/she cannot

Hospital director

 Requests budgets for distilled water and fuel for generators.

- Request technical assistance to UGP when problems can't be solved by technician.
- Attended to administrator trainings

Ministry of Health (MSPP-UGP)

- Unit in charge of managing energy and IT infrastructure needs at the public hospitals nation wide.
- Procures large quantities of batteries from national budgets or donor community to distribute them to health facilities nation wide.
- Responds to technical requests from hospitals

- Data collected from posts records published by the Ministry of Health.
- 1 to 3 year old population chosen for more constant vaccination rates through the years
- Pre PV system the vaccines were administered the day they were delivered. Post PV system the vaccines are administered on demand.
- PV system impact can not be measured trough vaccination rates data from ministry, as this depends on actual vaccine supply and not refrigeration

Guyana Health Facilities Lessons Learned

- Load simplicity contributed to system longevity and lower maintenance levels
- Load complexity is required for higher Energy-Health impact/ remote areas health staff retention
- Partnering with an energy agency has been highly effective on system endurance
- Facility maintenance staff in within the Ministry of Health has not been responsive
- Health (vaccination) statistical data is affected by other factors that do not allow a fair measurement energy impact

IHFI -- Haiti Improving Health Facility Infrastructure

4 - Training program

Training activities

- 150 technicians, installers and administrators trained
- 9 Technician training sessions (5 days)
- 2 Hospital Administrator training sessions (1 day)
- 1 Installer training session (2 days)
- 20 on-site medical/lab staff training (1h)

IHFI Data Logging and Management

IHFI -- Haiti Improving Health Facility Infrastructure

Knowledge Management

- Monitoring
- Evaluation
- Reporting
- Information dissemination
- <u>www.poweringhealth.org</u>
- Facebook page
- YouTube videos
 - Training/information
 - Documentation

Project achievements

- 32-35 backup power systems operating by 2015
- Network of trained technicians
- Close collaboration with Haitian government UGP
- Rewired installations for safety and patient comfort
- Several capable local electrical installation companies
- Introduction of knowledge of NEC, environmental aspects

Improving Health Facility Infrastructure

IHFI -- Haiti

Questions on some decisions taken...

- Standardization of equipment
 - Pros: ease of procurement, installation, training
 - Cons: obsolescence, lack of broader familiarity; sustainability?
- Use of grid, instead of going off-grid (i.e., no solar PV)
 - Pros: more installations at lower cost
 - Cons: counting on grid improvement in the future
- Use of local contractors for installations
 - Pros: capacity building; leveraging of small IHFI team
 - Cons: slower response; bidding, negotiation
- Introduction of equipment new to Haiti (batteries)
 - Pros: bigger capacity, easier design
 - Cons: unfamiliar, high watering requirement, expensive to replace
 - Ongoing questions about "wet" vs. "dry" batteries

Strategy for sustainability

- Local team of engineers
- Programmatic approach; standard designs
- Training for 4 vocations
- Monitoring of installations; establishment of logging cycle
- Collaboration with local counterpart institutions

Challenges still facing

- Unplanned loads added
- Ownership of backup power systems
- Lack of budget and/or access to distilled water for the batteries
- No budget for end-of-life battery replacement
- Institutionalization
- Inevitable load growth in health facilities

Thank you! Please visit

www.poweringhealth.org

